Huneke-Ulrich Almost Complete Intersections of Cohen-Macaulay Type Two

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

RESULTS ON ALMOST COHEN-MACAULAY MODULES

Let $(R,underline{m})$ be a commutative Noetherian local ring and $M$ be a non-zero finitely generated $R$-module. We show that if $R$ is almost Cohen-Macaulay and $M$ is perfect with finite projective dimension, then $M$ is an almost Cohen-Macaulay module. Also, we give some necessary and sufficient condition on $M$ to be an almost Cohen-Macaulay module, by using $Ext$ functors.

متن کامل

Initial Algebras of Determinantal Rings, Cohen–Macaulay and Ulrich Ideals

Let K be a field and X an m×n matrix of indeterminates over K. Let K[X] denote the polynomial ring generated by all the indeterminates Xij . For a given positive integer r ≤ min{m, n}, we consider the determinantal ideal Ir+1 = Ir+1(X) generated by all r + 1 minors of X if r < min{m, n} and Ir+1 = (0) otherwise. Let Rr+1 = Rr+1(X) be the determinantal ring K[X]/Ir+1. Determinantal ideals and ri...

متن کامل

Cohen-macaulay Residual Intersections and Their Castelnuovo-mumford Regularity

In this article we study the structure of residual intersections via constructing a finite complex which is acyclic under some sliding depth conditions on the cycles of the Koszul complex. This complex provides information on an ideal which coincides with the residual intersection in the case of geometric residual intersection; and is closely related to it in general. A new success obtained thr...

متن کامل

Combinatorial Decompositions of Rings and Almost Cohen-Macaulay Complexes

The concept of a combinatorial decomposition of a graded K algebra was introduced by Baclawski-Garsia [4], and they showed that every (finitelygenerated) graded K algebra has such a decomposition. The purpose of this paper is to prove some general properties of combinatorial decompositions, which are useful for finding such decompositions. We then show how to compute combinatorial decomposition...

متن کامل

Veronesean Almost Binomial Almost Complete Intersections

The second Veronese ideal In contains a natural complete intersection Jn generated by the principal 2-minors of a symmetric (n× n)-matrix. We determine subintersections of the primary decomposition of Jn where one intersectand is omitted. If In is omitted, the result is the other end of a complete intersection link as in liaison theory. These subintersections also yield interesting insights int...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 1995

ISSN: 0021-8693

DOI: 10.1006/jabr.1995.1132